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Abstract—Modern Transformer-based deep neural networks
are increasingly reliance on an accelerator’s ability to perform the
model’s non-linear operations accurately and efficiently. Unfortu-
nately, while conventional low bitwidth fixed-point arithmetic are
superior in terms of power, performance, and area consumption
for low-precision linear operations, they are not well-suited to
perform non-linear operations that require large dynamic range
and high precision. In this work, we present a case for using
a mix of low-bitwidth block floating-point and single precision
floating-point operations to address the needs of both the linear
and non-linear layers of Transformer-based DNNs. To support
both datatypes in hardware, an 8-bit block floating point (bfp8)
processing array that can be reconfigured to implement 32-bit
floating point (fp32) computation during run time is proposed.
With the support of both datatypes, pre-trained Transformer
models in fp32 can now be deployed without the need for
quantization-aware retraining. The proposed bfp8 systolic array
has been implemented efficiently on an AMD Alveo U280 FPGA,
consuming only marginally more hardware resources than an
int8 equivalence. It attains 2.052 TOPS throughput for the linear
operations in bfp8 mode, which is equivalent to over 95% of the
theoretical maximum 8-bit throughput of the target platform,
while it achieves 33.88 GFLOPS throughput when operating
in fp32 mode. By demonstrating the hardware efficiency of
low-precision floating-point operations on FPGAs, this work
provides an attractive tradeoff direction in the vast design space
of accuracy, speed, power, and time-to-market for full-stack
Transformer models acceleration.

I. INTRODUCTION

The emergence of Transformer-based deep neural networks
(DNNs) in recent years is introducing a new wave of chal-
lenges to conventional accelerator design that commonly em-
ploys fixed-point arithmetic for inference. To begin with,
modern Transformer-based models [1], especially those col-
loquially referred to as large language models (LLMs), are
substantially larger than even the largest vision models from
just a decade ago. For instance, the largest Open Pre-trained
Transformers (OPT) model contains 175B parameters [2]
while the ResNet-101 model had only 44.6M parameters [3].
As a result, model retraining, which is an indispensable
step in model quantization, is becoming either undesirable
or infeasible due to the lack of training data and computing
resources, as well as concerns regarding data privacy.

Perhaps more importantly, a defining feature of Transformer
models is their increasing reliance on the use of non-linear
operations in their designs. For example, every Transformer
block contains a softmax layer for self-attention, as well as
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a GELU and a LayerNorm layer that are intertwined with
the rest of the linear layers [1]. Unlike vision DNNs from
the last decade that primarily operated with linear layers,
researchers have repeatedly demonstrated that these non-
linear operations in Transformers are highly susceptible to
quantization error [4]–[6], [6], [7]. Although approximation
schemes suitable for hardware implementations for some of
these non-linear functions have been proposed [4], [8], new
non-linear functions are constantly being introduced as the
field progresses [9], [10]. As a result, in order to adapt to
this rapidly evolving area, a run time programmable hardware
solution is highly desirable.

To address these challenges, we present a case for leveraging
low-bitwidth floating-point arithmetic to implement efficient
hardware accelerators for Transformer-based DNNs. Specifi-
cally, we present our design that employs 8-bit block floating-
point (bfp8) for linear operations of a Transformer model,
while it relies on single-precision floating-point (fp32) for
non-linear operations. As previously shown in [11], block-
based low-bitwidth floating-point operations are adequate to
preserve the accuracy of Transformer models without the need
for lengthy quantization-aware re-training, which is particu-
larly desirable with modern large models. Here, we present a
systolic array design that can perform matrix multiplications
in bfp8 mode with performance comparable to an equivalent
int8 implementation, making a case that bfp8 can indeed
offer both the accuracy and the hardware efficiency needed
for Transformer acceleration. In addition, the proposed ar-
chitecture can be reconfigured into a fp32 vector processing
unit during run time, which can be programmed to support all
non-linear functions of the model. With this mixed-precision
approach, our method combines both types of operations into
a single processing unit and allows Transformer models to
be deployed without the need for time-consuming retraining.
Our evaluation on an AMD Alveo U280 FPGA shows that
our design achieves 2.052 TOPS throughput in bfp8 matrix
multiplication and theoretically up to 33.88 GFLOPS through-
put in fp32 vector processing mode. When compared to an
equivalent int8 implementation, our bfp8 design consumes
the same number of DSPs and 1.19× more flip-flops (FFs).
In addition, when compared to a design with individual bfp8
and fp32 processing hardware, our reconfigurable design
saves 20.0% DSPs, 61.2% FFs and 43.6% look-up tables
(LUTs) without performance degradation. With high accuracy
and low hardware overhead, the proposed system represents
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Fig. 1: Illustration of the 8-bit block floating-point (bfp) and
the IEEE standard 32-bit floating-point (fp32) format. Our
proposed solution aims to process the two formats in one
single hardware unit.

a new trade-off direction in the vast design space among
model accuracy, performance, power, and time-to-market for
transformer model acceleration.

II. HARDWARE DESIGN

A. Arithmetic Analysis

As shown in Fig. 1, a block floating-point (bfp) system
encodes the values of every element in a block with a
shared exponent, while each element is encoded with its own
mantissa. Let the shared exponent of a block be expb and the
mantissa of each element be manij , with the size of the 2-D
block being m × n, the value of each individual data (valij)
within a block can be expressed as:

valij = 2expb ×manij , i ∈ [1,m], j ∈ [1, n] (1)

In this study, 8-bit 2s complement encoding was used for
both the shared exponent and each block element to form a
bfp8 representation format.

To efficiently deploy mixed-precision workloads with bfp8
and fp32 formats, we first illustrate how to fuse 8-bit block
floating-point (bfp8) matrix multiplication (MatMul) and 32-
bit floating-point (fp32) basic operations into a single process-
ing unit by arithmetic analysis.

When performing bfp8 MatMul between two blocks X
(m × n) and Y (n × p), as indicated by equation Eqn. (1),
the resulting matrix Z can be expressed as:

X ·Y = Z, Zij =

n∑
k=1

XikYkj , i ∈ [1,m], j ∈ [1, p]

expbZ = expbX + expbY ,

manZij =

n∑
k=1

manXik
×manYkj

(2)

where the shared exponent expb and mantissa man are both
set to 8-bit in bfp8 format. Therefore, the multiplication of
two 2-D bfp8 blocks can be seen as an addition of int8 (exp)
along with an int8 matrix multiplication. The use of a systolic
array [12] is commonly considered appropriate for this type

of multiplication. Consequently, support for bfp8 addition is
necessary to combine the partial blocks since the block size
is fixed in our design:

X+Y = Z, Zij =Xik + Ykj , i ∈ [1,m], j ∈ [1, p]

manZij
= manXik

+manYkj
>> (expbX − expbY )

expbZ = expbX

(3)

For simplified representation, we assume expbX ≥ expbY ,
i.e., the mantissa of manYkj

needs to be shifted to the right
for alignment. In a real hardware design, it is necessary to
implement a comparator for addition operations.

The key motivation in this work is to fuse the fp32
operations with such low-bitwidth arithmetic in bfp8. Taking
into account fp32 multiplication of two values x and y, and
assuming that the exponent values have already been biased,
and the sign bit has been fused to the mantissa (i.e, signed
magnitude), the process can be presented as follows:

x× y = 2expx+expy × (manx ×many) (4)

In the fp32 data format, the exponent and the mantissa
field are 8-bit and 24-bit, respectively. Many previous studies
proposed mixed-precision support in fp by separating the
mantissa field into low-bitwidth slices [13]. Each 8-bit slice
is an individual int8 number, thus the fp32 multiplication in
Eqn. (4) can be converted to:

x× y = 2expx+expy × (manx ×many)

= 2expx+expy ×
2∑

i=0

2∑
j=0

manx(i)×many(j) << 8(i+ j),

manx,y(i) = manx,y[8i+ 7 : 8i]
(5)

where the manx,y(i) is the 8-bit slice of mantissa. The final
mantissa result will be renormalized and truncated, which has
been omitted in Eqn. (5). Based on such separation, the fp32
multiplication can be converted to one int8 addition and a
sum of nine int8 multiplications with shifting. Therefore,
fp32 multiplication should be able to run on the bfp8 matrix
multiplication unit with different control flow.

For fp32 addition, we apply the similar modification in
Eqn. (3), as shown in Eqn. (6).

x+ y = 2expz ×manz

manz =manx +many >> (expx − expy)

expz = expx

(6)

where the sign bit is integrated in the mantissa field. Similar
to Eqn. (3), we assume expx ≥ expy so the many needs to
be shifted.

Table I presents an overview of the fundamental functions of
bfp8 MatMul and fp32 multiply & add, as determined in this
section. The consistent numerical trends observed here inspire
the creation of the multi-mode processing unit, as detailed in
the subsequent section.
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Fig. 2: The proposed processing unit architecture. We imple-
ment a DSP48E2 block per processing element (PE) to deploy
8-bit based multiplications.

B. Hardware Design

Fig. 2 depicts the proposed design of the multi-mode
processing unit. In this study, we have chosen the size of the
two-dimensional block of bfp8 to be 8 × 8, which contains
64 elements. Consequently, the foundational architecture is
structured as a systolic array with dimensions of 8 rows and
8 columns, which corresponds to the size of a block. Each
processing element (PE) within the array comprises data reg-
isters, pre-shifters, and a DSP48E2 block [14] that integrates
a pre-adder, a 27 × 18 tiplier, and an internal partial sum
(PSU) adder, as shown in Fig. 3. When matrix multiplication
(MatMul) is performed, partial sums (PSUs) are accumulated
through column connections. At the bottom of each column,
there exists a shifter to align the mantissa according to the
exponent results, along with a PSU buffer to store the previous
summations. Moreover, it integrates this PE for performing
fp32 multiplication. Due to the absence of data reuse in the
fpmul, systolic dataflow is not utilized in this scenario. Instead,
the fp32 layout crossbar directly broadcasts the four fp32 data
into four columns according to the slices to be processed in
parallel. In addition to the systolic array, an exponent unit
(EU) has been devised to handle exponent calculations for both
bfp8 and fp32 fundamental operations. There is also a simple
XOR gate to process significant bits of fp32 data, which is not
presented in the figure for simplification. Further elaboration
on the dataflow in two formats that utilize the same hardware
unit is provided in the following sections.

To improve computational performance, we implement
combined multiply-accumulation (MAC) optimization using
AMD DSP48E2 blocks [15], [16], as illustrated in Fig. 3. With

A

D

B

Pr
e-

A
dd

er

Pr
e-

sh
ift

er

Y 
Re

g
X 

Re
g

Re
g PS

U
 A

dd
er

DSP48E2

27⨉18 MUL

PCOUT: to next PE

PCIN: from last PE 

Cascaded Connection

PE

Fr
om

 la
st

 P
E

To
 n

ex
t P

E

Y0[0]Y0[7]0 …

Y1[0]Y1[7] …Y1[7]……Y1[7]Y1[7]

0 0… … … D

A

BX[0]X[7] …… X[7]

182526 017…

2526 0… 7

…

0717

P

…

015
XY1
[0]

XY1
[15]

…

…
17 16

XY0
[0]

XY0
[15]

… …

1833… …

…

Combined MAC 
in bfp mode

Fig. 3: Processing Element (PE) design and the optimization
scheme in bfp8 MatMul mode to process 2 MACs in one DSP
block.

the mantissa bitwidth of bfp8 set at 8-bit, each DSP48E2 block
can accommodate two MACs, leading to a possible overall
improvement in computational efficiency. This configuration
allows for the accumulation of up to 7 product terms without
overflow issues in the lower bits. By configuring the row
numbers as 8, we can cleverly circumvent such overflow
problems in the bfp8 MatMul computations. When it comes
to fp32 mode, we apply a tricky optimization for better FPGA
routing, by pre-shifting the input mantissa slices before multi-
plication, instead of shifting the results after multiplication
(Eqn. (5)). With such an optimization, the DSP blocks in
each column can be connected as a cascaded topology, fitting
the bottom layout of the DSP [14]. It is important to note
that in the fp32 modes, DSP blocks cannot operate in the
combined MAC setup because the results need to be shifted
according to Eqn. (5), resulting in an overflow in the lower
bits. Also, due to the data layout configuration explained in the
following context, the fp32 mode can only utilize 4 columns
of PEs (i.e., 4 FPUs). In summary, for one unit, the theoretical
peak throughput of bfp8 (operations per second, OPS) can be
presented as:

Thrbfp−peak = rows× columns× 2× 2× Freq (7)

where the the Freq refers to the hardware frequency. The
first ×2 factor in Thrbfp−peak stands for the combined MAC
optimization, and the second ×2 factor is determined by the
assumption that each MAC operation actually consists of two
operations (multiplication and addition).

C. Data Layout in Buffers

In correspondence with the Processing Element (PE) array,
the X buffer and Y buffer are intended to store information
and reorganize the data structure for further processing. Each
block ram (BRAM) uses one BRAM18 in the AMD FPGA
devices. The data layout of X buffers is illustrated in Fig. 4
using a single block of bfp8 and 32 fp32 data as an example.
We have set up 16 BRAMs to store the mantissa of bfp8
and additional one BRAM for the exponent of bfp8. In this
figure, each column refers to one BRAM, and we index them
as 0 ∼ 15. Consequently, each block occupies 8 mantissa
BRAMs. When operating in fp32 mode, the 8 mantissa
BRAMs are repurposed to store fp32 data. As illustrated
before, the significant bit is integrated in the mantissa field,



man1,1

man8,1

man1,2	

man8,2

man1,8

man8,8

…

8-bit expBShared exp

… …

bfp8

8-bit

exp man

23-bit

S

exp manS

…
exp manS

fp32
fp0

fp1

fp31
…

Memory Interface

Other Blocks

…

…

Other 
Blocks

bfp8 Layout
Memory Interface

Idle

ExpB

Other fp32 data

fp32 Layout

0 1 3 4

man0 
[7:0]

man4 
[7:0]

man28 
[7:0]

man0 
[15:8]

man4 
[15:8]

man28 
[15:8]

exp0 

exp4 

exp28 
… …

man1 
[7:0]

man5 
[7:0]

man29 
[7:0]

…

exp1 

exp5 

exp29 

exp3 

exp7 

exp31 

7 15… … …

fp32 Layout Converter
0 1 3 4

1,1

… … …

7 Other 
Blocks

2,1

8,1

1,2

2,2

8,2

1,4

2,4

8,4 …

…

… 1,8

2,8

8,8

4 fp32 numbers per cycle To PE array & EU8 bytes per cycleTo EU
Direct Connection

ExpB
This block

To PE array

Fig. 4: Data layout in X buffers including 17 BRAMs with
8-bit (one Byte) port. For the Y buffer, data layout is similar
except in bfp8 mode, the other half of BRAMs also output
data during runtime, due to the combined MAC optimization.

thus each data contains a 24-bit signed-magnitude mantissa
in total. Then, all 4 BRAMs are assigned to a single fp32
number, while the exponent BRAM remains inactive. For
example, as shown in Fig. 4, BRAMs 0 ∼ 2 are utilized
for the three 8-bit mantissa slices corresponding to Eqn. (5)
of fp0, and BRAM 3 is dedicated to its exponent (exp0).
BRAMs 4 ∼ 15 follow the same configuration. It is important
to note that due to the implementation of a combined MAC
optimization, the Y buffer requires replication of the BRAMs
(i.e., 16 BRAMs are all output to PE arrays with two blocks),
while maintaining the same data layout. The analysis in data
layout explains why only 4 FPUs can be used in fp32 mode,
since the total bitwidth of the BRAM output per cycle is only
128-bit, thus, the bandwidth of buffers is 4 fp32 data per cycle.
Therefore, we only enable the 4 columns of PEs while keeping
the remaining PEs idle to save power, as illustrated in Section
II-B. Thus, the throughput of the fp32 mode (floating-point
operations per second, FLOPS) can be presented as:

Thrfp32−peak = 4× Freq (8)

D. Dataflow

Fig. 5 (a) illustrates the dataflow in bfp8 MatMul mode,
where a Y-stationary dataflow is employed. Initially, two Y
blocks are loaded into the PE arrays and saved in the Y
register within each PE. Subsequently, the X blocks are fed
into the PE arrays using a systolic array dataflow approach,
where X moves horizontally and the partial sums accumulate
vertically. This Y-stationary dataflow necessitates keeping the
Y matrix in the PEs for as long as possible to boost the
computational throughput. Synchronously, the exponent unit
computes the exponent addition of the two Y blocks with the
streamed X blocks, and transmits the results to the shifters for
alignment (Eqn. (3)). After shifting, the accumulator (ACC)
calculates the results between different blocks by fetching the
old data in the PSU buffer. Theoretically, the computational
throughput (OPS) can be presented as:

Thrbfp = Thrbfp−peak × (8×NX)/(8×NX + 15) (9)

where the NX refers to the number of streamed X blocks and
Thrbfp−peak is the peak performance of one processing unit.
The 8 and 15 factors indicate cycles for each X block and
the pre-load Y & systolic array triangle cycles. In the current
design, we set the maximum number of continuous X blocks
as 64 due to the BRAM18 architecture, so the PSU buffer
depth is 512, and the computational throughput can reach up
to 97.15% of the peak performance.

When operating in fpmul mode, we have detailed the
adjustment of fp32 mantissa multiplication to bfp8 MatMul
by reusing the DSPs. For simplified presentation, we do not
depict the significant bit operation between two fp32, which
only requires one XOR gate. As shown in Eqn. (4) and Fig. 5
(b), the 24-bit mantissa is divided into three slices (a, b, c
and d, e, f), and the total result is obtained by summing up 8
partial products. To accommodate the 8-row PE array, the least
significant partial product is omitted. These partial products
require shifting before being combined with other products.
Leveraging the DSP48E2 architecture, we implement a pre-
shifting mechanism on the input slices, as opposed to post-
multiplication shifting. For example, the partial product term
cd necessitates an 8-bit left shift, and all PEs in row 1 (e.g.,
PE(1, 0), (1, 1), etc.) left-shift the input X slice (Xc) and Y
slice (Yc) by 4 bits to meet the 8-bit pre-shifting requirement.
In this scheme, the maximum number of left-shifted bits in
fp32 multiplication is 24, thus the 27-bit & 18-bit input widths
of DSP48E2 support such pre-shifting without encountering
overflow. It is important to note that due to the pre-shifting
operation, the combined MAC optimization cannot be utilized
in this mode. The layout converter switches and duplicates the
fp32 mantissa & exponent slices, to fit the data mapping in
Fig. 5 (b). Additionally, due to the data arrangement discussed
above, only the 4 columns of PEs (4 FPUs) can be used in
parallel for fp32 multiplication, with the remaining PEs idle
(in sleep mode) during execution.

Regarding the fpadd mode, in the case of PEs equipped with
DSP blocks, they remain inactive since only the exponent unit,
shifter, and mantissa adder are necessary for this operation,
as indicated by Eqn. (6). The processing unit utilizes the
shifter and the PSU accumulator for fpadd tasks, ensuring
minimal hardware overhead. For clarity, the fpadd dataflow is
not illustrated in Fig. 5. In this mode, the mantissa is treated as
a single unit rather than being divided into three slices and is
sent directly to the ACC for addition. In the fpmul and fpadd
modes, the X and Y slices are treated as streams, similar to the
bfp mode. Currently, we set the input stream length as Lfp32

(i.e., in total 4 × fp32 numbers), which is set to a maximum of
128 due to the memory capacity of a single BRAM18 block.
Similar to the analysis in bfp8 MatMul mode (Eqn. (9)),
the theoretical computational throughput (GFLOPS) can be
calculated as follows. Note that since there is no preloading
in fp32 mode, so the factor 15 in Eqn. (9) becomes 8.

Thrfp32 = Thrfp32−peak × Lfp/(Lfp + 8) (10)
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Fig. 5: The proposed workflow in bfp8 MatMul mode (a) and fp32 multiplication mode (b). Partial summations and products
are accumulated through columns using the cascaded connection of AMD DSP48E2 blocks. The modules in deep gray indicate
that they are idle in this mode. Due to the data layout in the bfp mode, this unit can utilize only four PE columns in the fp32
mode, which supports four fp32 multiplications in parallel.

TABLE II: Hardware unitilization of the proposed processing
unit with other necessary modules

Components LUT FF BRAM DSP

PU∗

PE Array 1317 1536 0 64
Shifter & ACC 768 644 0 8

Buffer & Layout Converter 752 764 50.0 0
Exponent Unit 269 195 0 0

Quantizer 348 524 0 0
Misc.† 483 1944 3.0 0

Memory Interface 2963 4270 4.5 0
Controller 448 452 0 0

Total 7348 10329 57.5 72
∗The key components of the proposed multi-mode processing unit (PU).
†Including delay chains, AXI-Stream register slices, etc.

III. EVALUATION

The proposed multi-mode processing unit is implemented
on AMD Alveo U280 FPGA with high bandwidth memory
(HBM), where we evaluate utilization, throughput, and energy
consumption. We developed the hardware design using Verilog
HDL and implemented it with the Vitis 2021.2 tools. In addi-
tion to the processing element arrays and buffers, we integrate
essential components like memory interface, quantization unit,
etc., for real-time computation. The hardware system runs on
a 300 MHz frequency. With the multi-mode unit, the complete
system can perform bfp8 MatMul and fp32 multiply & add
operations with comprehensive support.

A. Hardware Utilization

Table II shows the hardware utilization divided into different
components for one processing unit with other necessary mod-
ules. Compared to the pure bfp8 design, the overhead modules
(Layout Converter and controller) only take up 10.23% LUT
and 11.77% FF, without additional BRAM or DSP, to support
the proposed hybrid data formats. The resource efficiency
comes from the reuse of PE arrays and buffers in both bfp8
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Fig. 6: Resource utilizations of different processing unit de-
signs. Results normalized to the int8 design.

and fp32 modes, thus enabling our design to be expanded to
multiple parallel units on FPGA, running with independent
instructions.

To further investigate the benefits of using a single unit
for both bfp8 and fp32 data formats, we established four
different implementations of PE arrays for matrix multiplica-
tion, illustrated in Fig. 6. These implementations comprise 1)
an array for int8 MatMul, 2) an array for exclusive bfp8
MatMul (i.e., no fp32 operations), 3) our proposed multi-
mode design that employs a unified array for both bfp8 and
fp32 data, and 4) separated processing units for bfp8 MatMul
and parallel fp32 multiply & add, processing independently
(briefly denoted as “indiv" in Fig. 6). For individual fp32 units,
we leverage the AMD floating-point IP core for synthesis.
It should be noted that we configure the parallel level of
fp32 operations in the individual units as 4, to align with
the configuration in our design. The assessed hardware design
only comprises the PE array, the exponent unit, the mantissa
shifters, and the runtime controller to ensure a fair comparison.
The findings indicate that bfp MatMul requires more LUTs
than the int8 design due to the mantissa shifter required to
align different blocks. Additionally, our multi-mode processing
unit only introduces LUT overhead compared to a pure bfp8



TABLE III: Comparison with the related mixed-precision hardware accelerators on FPGA

Work Data Format Application Need
Retraining

FPGA
Platform

Utilization Frequency
(MHz)

Throughput
(GOPS)

Efficiency
(GOPS/DSP)LUT (k) FF (k) BRAM DSP

Lian et. al. [17] bfp8 CNN No VX690T 231.8 141.0 913 1027 200 760.83 0.74
Wu et. al. [18] fp8 CNN No XC7K325T 154.6 180.6 234.5 768 200 1086.8 1.42
Fan et. al. [19] bfp8 CNN No Intel GX1150 437.2 170.9 2713 1518 220 1667 1.24

Wong et. al. [20] bfp10 CNN No KU115 386.3 425.6 1426 4492 125 794 0.18
Auto-ViT-Acc [21] int4 & int8 Transformer Yes ZCU102 185.0 - - 1152 150 907.8 0.59

ViA [22] fp16 Transformer No Alveo U50 258.0 257.0 1002 2420 300 309.6 0.13
Ye et. al. [23] int8 & int16 Transformer Yes Alveo U250 736.0 - 1781 4189 300 1800 0.43

Ours bfp8 & fp32 Transformer No Alveo U280 410.6 602.7 1353 2163 300 2052.06† 0.95
†Only list bfp8 throughput here. The theoretical fp32 throughput is 33.88 GFLOPS.
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Fig. 7: Measured throughput of one unit on Alveo U280 FPGA
under different workloads v.s. the theoretical maximum.

array (approximately 2.94×) due to the pre-shifting in each
PE, while the utilization of FF and DSP remains nearly
identical to that of the bfp8 array. Opting for the individual
processing approach with segregated units results in substantial
hardware overhead compared to our design (2.58× FF and
1.25× DSP). As mentioned earlier, contemporary Transformer
models demand either significant retraining overhead (through
int8 quantization) or mixed-precision inference where the
non-linear functions retain a higher precision akin to fp32.
Hence, our approach offers a novel alternative within the
extensive design space that includes accuracy, speed, power
efficiency, and time-to-market considerations for accelerating
full-stack Transformer models.

B. Throughput Analysis

The proposed multi-mode unit provides high flexibility
for top-level compilers. Users can map different types of
workload to the hardware with mixed-precision during run-
time. Therefore, to evaluate the different performance, we
implemented 15 processing units in the Alveo U280 FPGA
to fully utilize the HBM channels1, and several workloads
have been tested in this design, including bfp8 MatMul with
various NX, and some fp32 multiplication operations with
various Lfp. All throughput results are measured by latency
based on going through the whole FPGA system in 300 MHz,
i.e., including the memory I/O latency, while the theoretical
results are calculated by Eqn. (9) and Eqn. (10). Fig. 7 left part
shows the results of linear layers with different tile lengths of
X (NX = 64, 32, 16, 8). The theoretical throughput of bfp8
MatMul is calculated by Eqn. (9). It can be seen that as

1Each multi-mode unit has 2 256-bit AXI channels connected to HBM

the length of the stream increases, the throughput increases
closer to the theoretical maximum. For the fp32 operations,
the performance results are displayed in the right section of
Fig. 7. The maximum fp32 throughput can be determined
by referring to Eqn. (8). The observed pattern is similar to
the bfp8 mode, where a longer input stream length leads to
increased throughput.

Based on this calculation, our FPGA prototype can achieve
33.88 GFLOPS performance on the Alveo U280 in fp32
operations. However, as shown in Fig. 7, the real systematic
throughput in FPGA is still far from the theoretical value.
This is because in our current design, we have not optimized
the compilation level which enables larger burst lengths for
fp32, as the fp32 operations have more random memory
access compared to bfp8 MatMul. Nevertheless, the trend of
performance change is similar to the bfp8 mode, indicating
that users should try to boost the processing stream length
in computation. The difference between different workloads
reflects the optimization space to boost the both bfp8 and fp32
performance, and thus we will explore further compilation-
level optimization in the future. It is important to mention
that in our current configuration, the division operations in
fp32, which constitute a minor portion, are executed on the
host CPU due to lack of support.

C. Comparison with Previous Work

To compare the proposed processing unit with previous
mixed-precision acceleration systems, we adhere to the same
settings in the throughput evaluation. We present hardware
utilization, throughput, and efficiency with a qualitative con-
figuration in Table III, compared to previous studies. The
proposed processing unit can attain a throughput that is on par
with other designs utilizing bfp8, low-bitwidth fp or integers
(int8). Although some previous works have exceeded our
throughput efficiency, we are able to integrate fp32 operations
into the proposed processing unit, thereby achieving greater
area efficiency. From a systematic perspective, our approach
offers increased flexibility to the compilation stage, enabled
by the mixed-precision runtime without separate units. It
is worth noting that some of these works leverage LUTs
for computation, leading to higher throughput, whereas our
evaluation strictly adheres to DSP computation based on the
equations outlined in Section II-D. Looking ahead, we plan
to delve deeper into high-precision floating-point optimization



TABLE IV: Estimated proportion of linear and non-linear
operations of a DeiT-Small model

Workloads
Partitions OPs or FLOPs† Operations

Proportion Latency (ms) Latency
Proportion

bfp8 MatMul 2465M 98.649% 1.201 8.170%
fp32 LayerNorm 6.383M 0.043% 0.425 2.891%
fp32 SoftMax 145.3M 0.969% 9.686 65.887%
fp32 GELU 50.84M 0.339% 3.389 23.053%
† Counted from all 12 blocks in a DeiT-Small model.

within the mixed-precision unit, as the fp32 format is often
overly precise for many machine learning systems.

D. Case Study: Vision Transformer

As previously stated, there is a significant increase in the
demand for high-precision floating-point accuracy, particularly
in Transformer models that involve non-linear computations.
To evaluate the overall latency performance, we utilized the
DeiT-Small model. In this scenario, we employed bfp8 for
matrix operations such as MLP and self-attention, while fp32
was used for non-linear functions. The SoftMax, GELU, and
LayerNorm functions were integrated into basic arithmetic
operations. Table IV illustrates the distribution of bfp8 and
fp32 workloads, along with the calculated end-to-end latency.
The analysis reveals that although fp32 computation only
takes 1.35% workloads, it still contributes to 92.45% of
the total latency, underscoring the importance of optimizing
mixed-precision techniques. It can be concluded that while
our proposed processing unit can dynamically support both
formats with minimal overhead, the processing efficiency for
high precision (fp32) is still lacking. From Fig. 5 (b), the
primary inefficiency in fp32 can be attributed to the idle state
of the PEs during execution due to the data layout constraint.
To mitigate latency issues, we will explore the optimization of
more suitable data formats to support the non-linear function
unit within our hardware architecture.

IV. RELATED WORK

A. Mixed-Precision Quantization

Researchers have found that different parts of DNN models
show varying levels of vulnerability to quantization errors
[24]. For example, the linear layer of a Transformer model is
resilient to quantization errors even at very low bitwidths [5],
[11], [19]. However, the accuracy of non-linear operations such
as SoftMax, GELU, and LayerNorm significantly influences
the overall accuracy of a Transformer-based model [6]. Con-
sequently, recent quantization frameworks either attempt to
quantize the non-linear functions through retraining, incurring
substantial overhead [4], [5], or maintain these operations at
higher precision [25], [26]. Although quantization frameworks
can balance model performance and hardware efficiency with-
out the need for retraining overhead [11], [22], the hardware
expenses of high-precision computation are significant. For
instance, a recent study has shown that as the embedding
dimension increases, the latency of non-linear functions in
Transformers increases significantly [8]. In this study, we

consider this hardware efficiency for high-precision non-linear
operations as a complementary investigation to understand
mixed-precision quantization frameworks.

B. Mixed-Precision Hardware Architecture

Previous research has explored various architectural de-
signs to effectively support mixed-precision quantization [27].
For example, integer-based mixed-precision architectures [16],
[28], [29], such as BitFusion [28] and bit-serial architecture
[16], [30], have been explored. In contrast, since integer
quantization suffers from accuracy loss or retraining overhead
in emerging Transformer models, there is a growing inter-
est among researchers in floating-point-based mixed-precision
hardware [13], [25], [31], [32]. A common strategy in this
domain involves partitioning the mantissa field of floating-
point numbers into slices and utilizing shift-add operations
to obtain the final outcomes, enabling different formats to
leverage the same fundamental unit for each slice and thus re-
ducing overhead [13]. We have integrated this concept into our
design by segmenting the mantissa of fp32 into several low-
bitwidth slices to align with bfp8 processing requirements.
Despite the numerous efficient mixed-precision architectures
proposed, existing quantization framework systems do not yet
widely adopt such an approach. Instead, they often employ
distinct hardware units for different formats at run-time [22],
[33]. In this work, we present a novel alternative that combines
all of these operations into a single hardware unit.

V. CONCLUSIONS

In this paper, we have presented a case for using
low-bitwidth floating-point arithmetic for Transformer-based
DNNs inference. We demonstrate that low-bitwidth floating-
point (bfp8) matrix multiplication can be implemented ef-
fectively in hardware with a marginal increase over an 8-
bit integer equivalence while attaining processing throughput
close to the platform maximum. In addition, we show that such
an array can be effectively reconfigured during run-time into
a programmable fp32 vector processing unit that can be pro-
grammed to implement any non-linear functions required by
future Transformer-based DNN models. With efficient support
of both datatypes, the proposed design eliminates the need to
quantize and retrain Transformer models, which is increasingly
challenging due to its size. We argue that mixed-precision
floating-point appears to be a promising datatype that provides
a favorable balance between model accuracy and hardware per-
formance for Transformer-based DNN acceleration. Currently,
an automatic compilation framework that provides full stack
acceleration of Transformer models is underway. The vector
processing unit is also being optimized to improve non-linear
function performance.
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