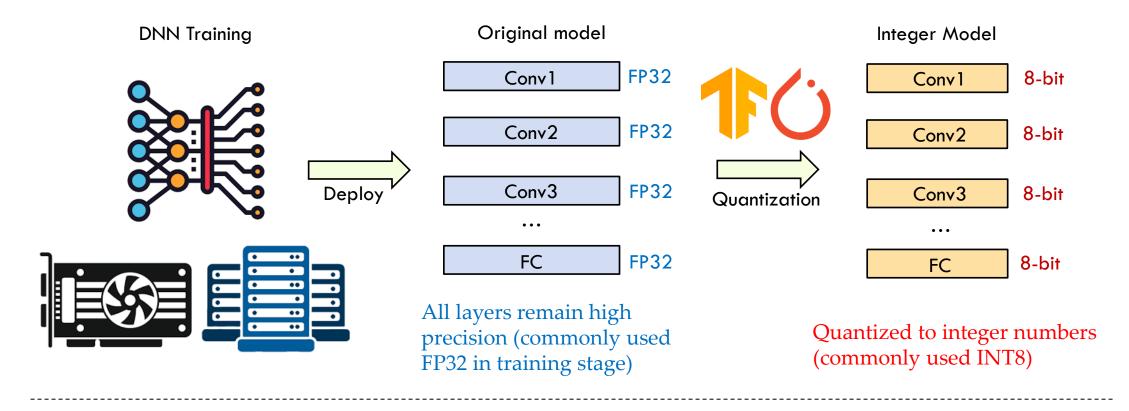


Research Objects Reviewed

MSD: Mixing Signed Digit Representations for Hardware-efficient DNN Acceleration on FPGA with Heterogeneous Resources

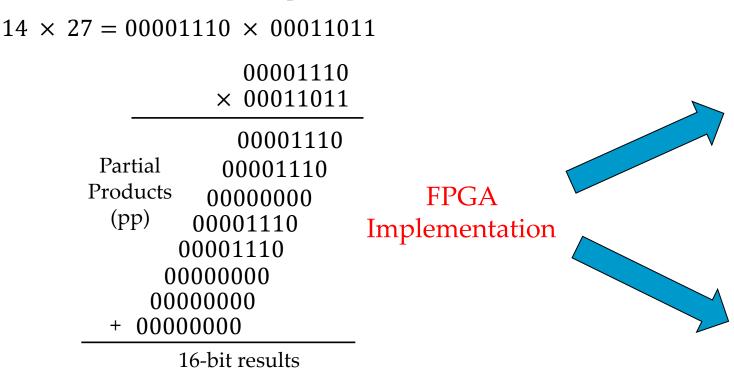
Jiajun Wu, Jiajun Zhou, Yizhao Gao, Yuhao Ding, Ngai Wong, Hayden Kwok-Hay So University of Hong Kong


FCCM 2023

9 May 2023

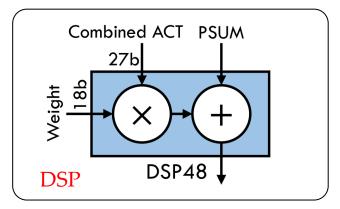
Contents

- Motivation & Background
- The Proposed Methodology
- Experiment Results
- Conclusion & Future Works


DNN Quantization

Can we further compress the computation of int8 to improve the inference performance without loss of accuracy?

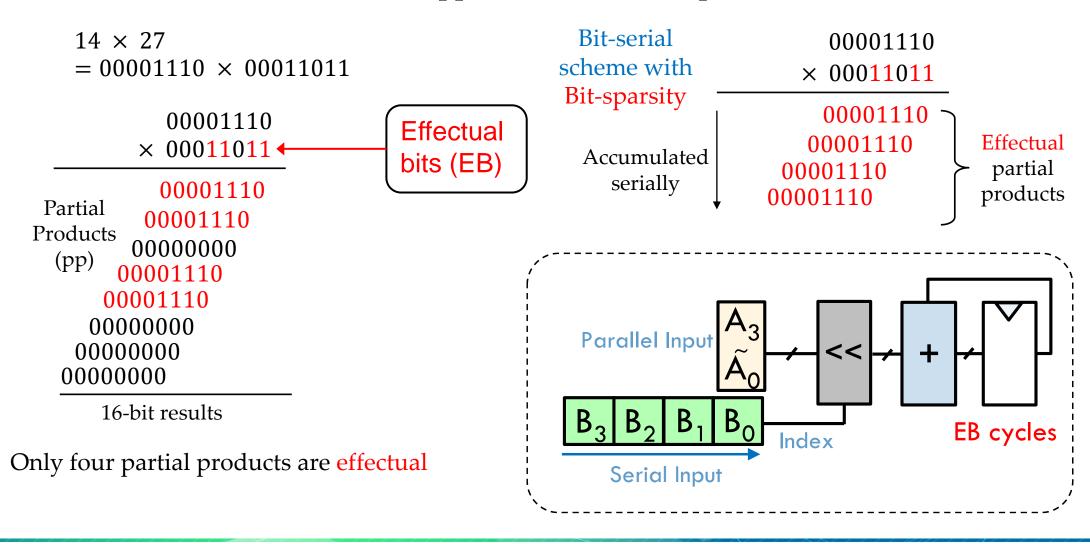
Deploy Quantized Multiplication


Conventional Int8 multiplication

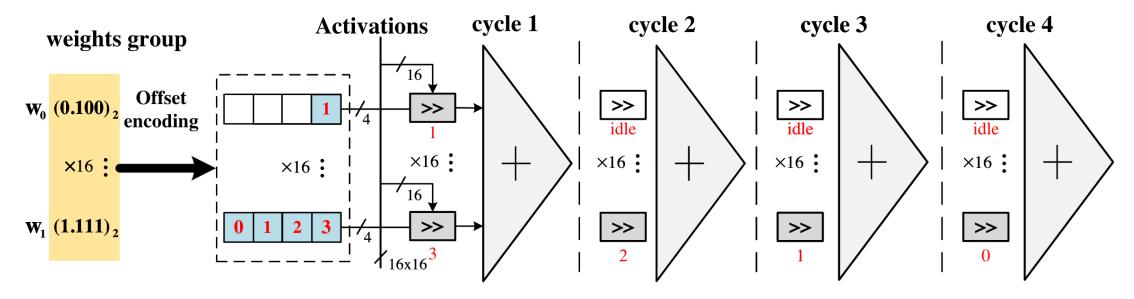
How do we further improve the performance?

- 1. To use both DSPs and LUTs for multiplication.
- 2. To make our LUT implementation smaller.

Parallel Multiplier



Latency: 1 cycle


Bit-Serial Scheme with Bit-Sparsity

An alternative approach for the multiplier on LUT

Workload Imbalance in Bit-Sparsity Scheme

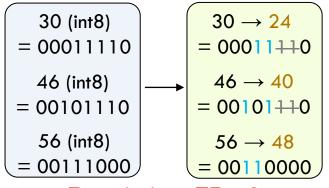
The workload imbalance issue in bit-sparsity:

Ref: BitCluster (TCAD, Volume: 41, Issue: 11, November 2022)

Need a method to use a restricted and small number of EB without causing major loss of accuracy.

Contents

- Motivation & Background
- The Proposed Methodology
- Experiment Results
- Conclusion & Future Works


Mixing Signed-digit Representations (MSD)

 A framework that automatically partitions the DNN workloads to run on DSPs and LUTs

 We proposed a new representation called restricted signed-digit (RSD) to help restrict the number of EB

Signed-Digit Representation

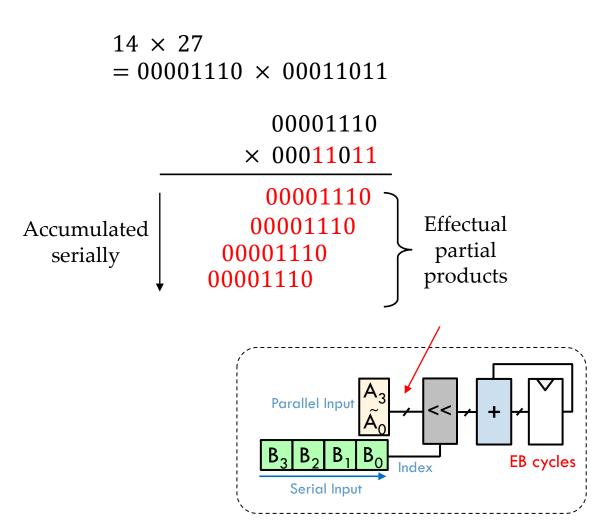
To solve the imbalance issue

Restriction: EB = 2

Large quantization error

Find another number format with higher representation capability

Our Approach: Signed-digit representation


Let X[i] (i-th bit in the number with n-bit) expand to 0, 1 and -1 ($\overline{1}$):

$$X = \sum_{i=0}^{n-1} (X[i] \times 2^i), \qquad X[i] = \{0, \boxed{1, -1}\}$$
 Effectual bits (EB)

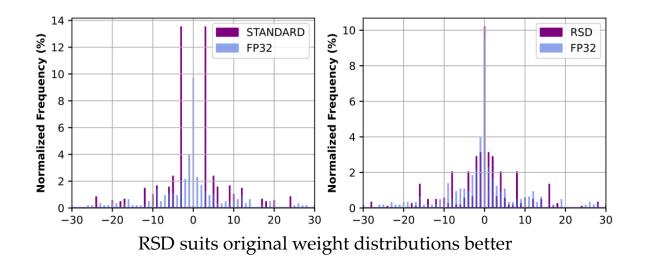
Note that 2's complement is actually a special case of signed-digit:

$$X = (-1)^{X[n-1]} \times 2^{n-1} + \sum_{i=0}^{n-2} (X[i] \times 2^i), \qquad X[i] = \{0, 1\}$$
$$= \sum_{i=0}^{n-1} (X[i] \times 2^i), \qquad X[i] = \begin{cases} \{0, 1\} & \text{if } i \neq n-1 \\ \{0, -1\} & \text{if } i = n-1 \end{cases}$$

Hardware Does Not Change a lot!

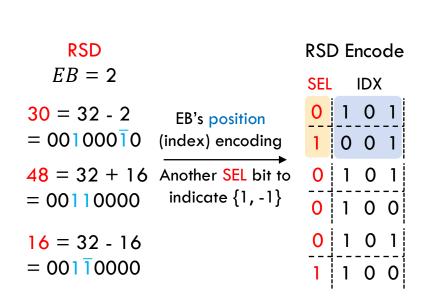
Signed-digit scheme

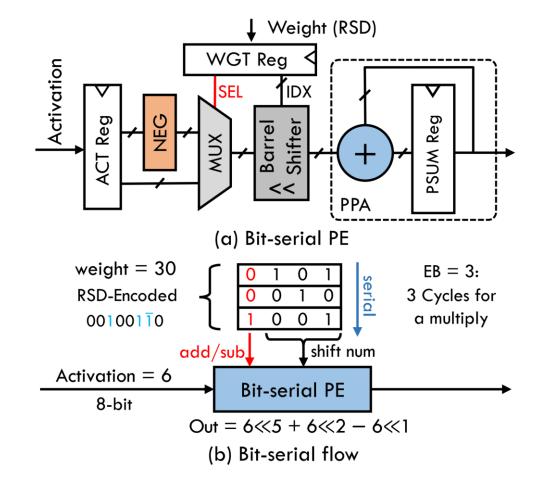
$$\begin{array}{c}
14 \times 27 \\
= 00001110 \times 00100\overline{1}0\overline{1} \\
& 00001110 \\
\times 00100\overline{1}0\overline{1} \\
& - 00001110 \\
& + 00001110 \\
& + 00001110
\end{array}$$
Effectual partial products

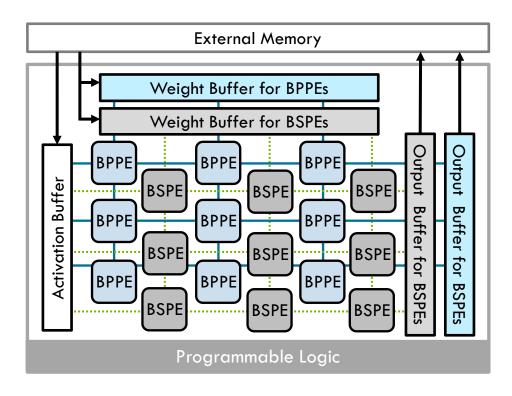

Subtraction is naturally the same with addition. We only need to add a simple circuit for negative values.

Restricted Signed-Digit

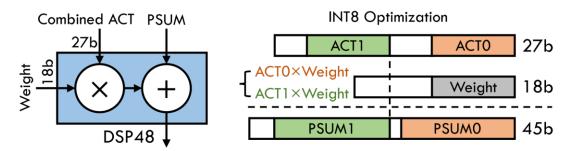
Restrict EB: Restricted signed-digit (RSD)


Original Numbers	2's complement $EB = 2$,	Error	$\frac{RSD}{EB} = 2$	Error
30 (int8) = 00011110	$30 \rightarrow 24$ = 00011+++0	6	30 = 32 - 2 = $001000\overline{1}0$	0
46 (int8) = 00101110	$46 \rightarrow 40$ = 00101++0	6	48 = 32 + 16 = 00110000	2
56 (int8) = 00111000	$56 \rightarrow 48$ = 00010001	8	$\frac{56}{6} = 64 - 8$ $= 0100\overline{1}000$	○


Algorithm: set up 2's integer power (0, 2, 4, 8,...) as the bases, iteratively find the base and sign bits according to the restriction. $30 \rightarrow \text{get } 32$ and -2 in two iterations

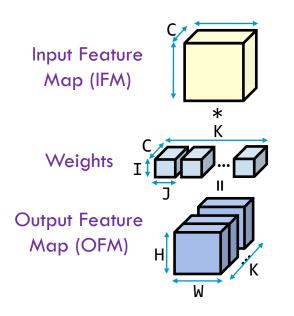

Weights Encoding & Bit-serial PE Design

We focused on layer-wise weights quantization in this work, and using the de facto
 8-bit (int8) model as the starting point.



Heterogeneous Architecture

- BSPE & BPPE: Bit-serial & Bit-parallel PE, set up as a systolic array
- BSPEs are implemented on LUTs, while BPPEs are based on DSPs, running simultaneously

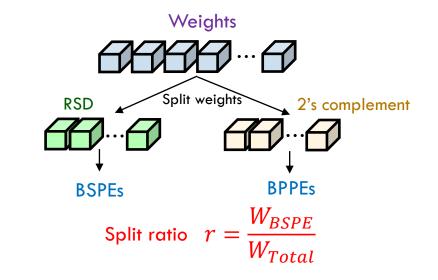

INT8 multiplication on DSPs (standard representation)

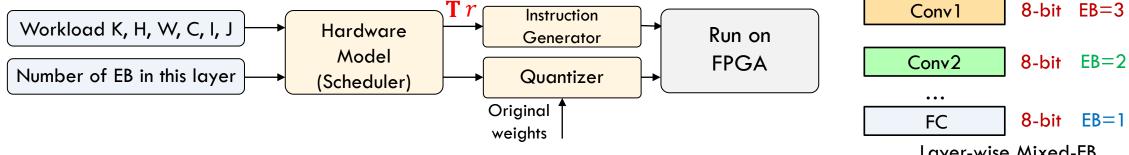
	Weights	Activations				
BSPE	RSD representation	Standard				
BPPE	Standard	Standard				
Consistence representation by mixing signed-digit (MSD)						

 Standard 2's complement can be regarded as a special case of signeddigit representation.

Search Schedules

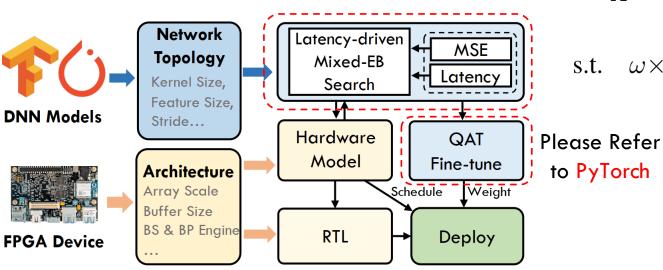
Parameters that need to be searched by the scheduler (for each layer)

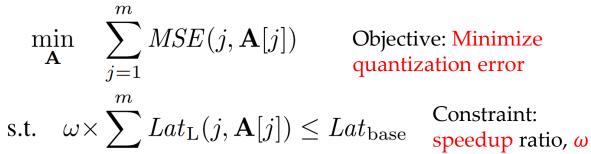


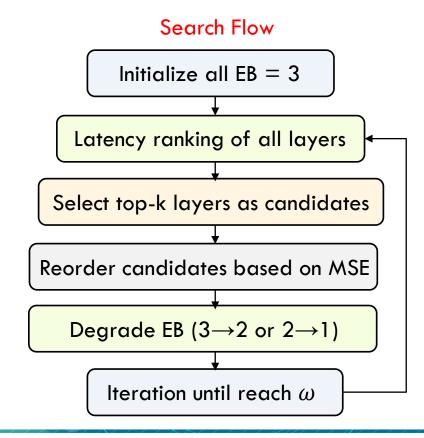

Part I: 6-dimension for-loop for each layer

Tile size in each dimension:

$$\mathbf{T} = [t_K, t_H, t_W, t_C, t_I, t_I]$$


Part II: Weight Split Ratio (workload partitioning)


Hardware-aware Mixed-EB Quantization


End-to-end framework

- Inputs: DNN models and FPGA device constraints
- Mixed-EB search for each layer, under the constraint of MSE and latency (calculated based on the hardware model)

$$MSE = \sqrt{\sum_{i=1}^{n} \left(\frac{x - \hat{x}}{\sigma_i}\right)^2}$$

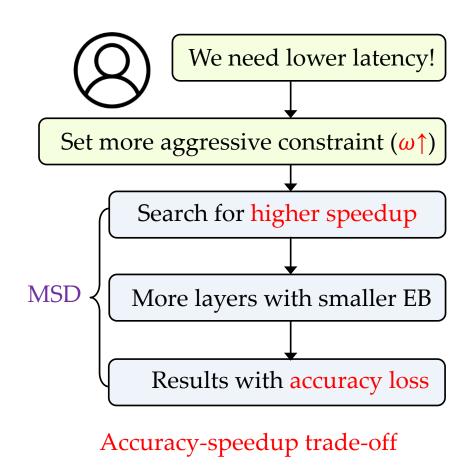
Contents

- Motivation & Background
- The Proposed Methodology
- Experiment Results
- Conclusion & Future Works

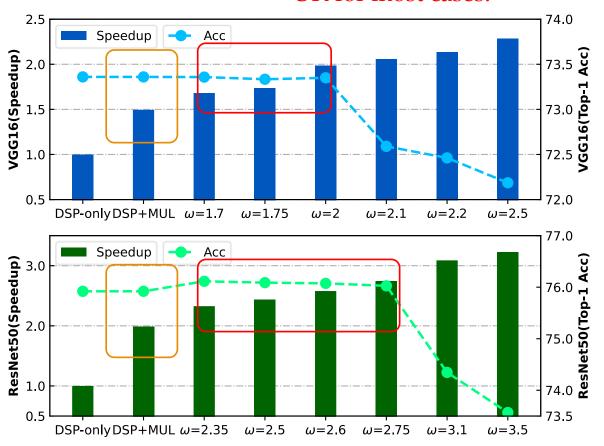
Mixed-EB Quantization

TABLE I: Mixed-EB speedup results with different constraints ω . A larger ω means a higher speedup and a more aggressive quantization strategy.

Model	ω	Layer-wise Mixed-EB Result A	Speedup
VGG-16	1.5	[3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.52
	1.6	[2 3 2 2 2 3 2 2 3 3 3 2 3 3 3 2]	1.60
	1.7	[2 2 2 2 2 3 2 2 3 2 3 2 2 2 2 2]	1.70
	2.0	$[2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2$	2.00
	2.1	$[1\ 1\ 2\ 1\ 1\ 1\ 1\ 2\ 2\ 1\ 2\ 1\ 2\ 1\ 2\ 1]$	2.14
	2.2	$[1\ 1\ 2\ 1\ 1\ 1\ 1\ 2\ 1\ 1\ 2\ 1\ 2\ 1\ 1\ 1]$	2.24
ResNet-18	1.5	[3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.51
	1.6	[2 3 2 3 2 3 3 3 2 2 2 3 3 2 2 2 2 3 2 3	1.62
	1.65	[2 3 2 3 2 3 2 3 2 2 2 2 3 3 2 2 2 2 3 2 3 2]	1.65
	1.7	[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.71
	1.8	$[2\; 2\; 2\; 2\; 2\; 2\; 2\; 1\; 1\; 1\; 1\; 1\; 1\; 2\; 2\; 1\; 1\; 2\; 1\; 2\; 1\; 1]$	1.84
	1.9	[2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1	1.90

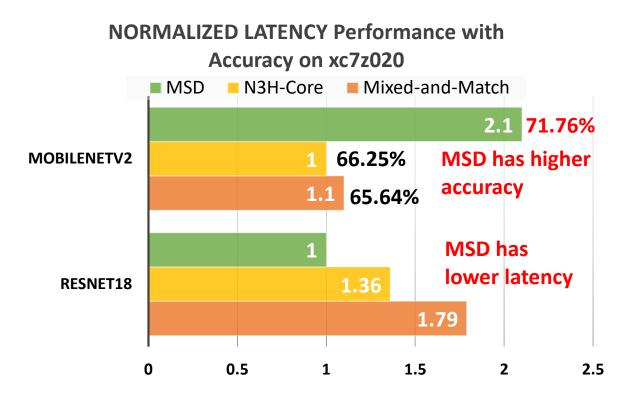

- Device: Ultra-96
- Layer-wise EB configuration
- **The final speedup meets the constraint of** ω

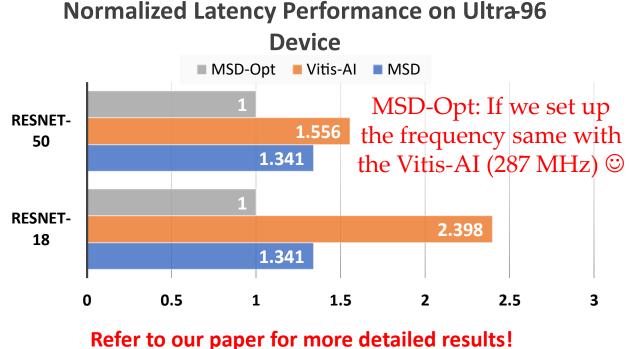
$$\min_{\mathbf{A}} \sum_{j=1}^m MSE(j, \mathbf{A}[j])$$
 Objective: Minimize quantization error s.t. $\omega \times \sum_{j=1}^m Lat_{\mathbf{L}}(j, \mathbf{A}[j]) \leq Lat_{\mathrm{base}}$ Constraint: speedup ratio, ω


The baseline is we only use DSPs for computation

- Higher speedup constraint -> larger ω
- More aggressive search for higher speedup, to reach the constraint

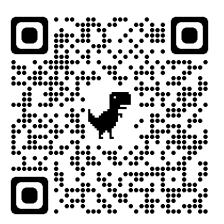
Accuracy-Speedup Trade-off




This area should be OK for most cases!

Also, RSD-based bit-serial scheme is more efficient than conventional parallel design on LUTs!

Comparison with Previous Works



Conclusion & Future Works

- MSD framework:
 - is a heterogeneous DNN acceleration framework that utilizes both LUTs and DSPs as computation resources and to exploit bit-sparsity.
 - fine-tunes and encodes the DNN weights into a bit-sparsity-aware format, making the bit-serial computation on LUTs more efficient.
 - uses a latency-driven algorithm to search for the optimal schedule and trade-off based on layer-wise mixed EB.
- We will explore more efficient scheduling methods and exploit FPGA-layout-tailored hardware design to enhance the hardware clock frequency further.

MSD open-source in GitHub

Thanks for Your Listening

Find us in the poster session!

Q & A

MSD open-source in GitHub