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Introduction

Typical Al Applications

QUEENS

KING

Vision Speech Text

* Search & information * Interactive voice * Search and ranking * Recommendation
extraction response (IVR) systems * Sentiment analysis engines

* Security/Video * Voice interfaces (Mobile, « Machine translation * Advertising
surveillance Cars, Gaming, Home) - Question answering * Fraud detection

* Self-driving cars * Security (speaker * Al challenges

« Medical imaging identification) * Drug discovery

* Robotics * Health care * Sensor data analysis

* Simultaneous .

Diagnostic support
interpretation & PP

Source: https://www.hpcuserforum.com/presentations/Wisconsin2017/HPDLCookbook4HPCUserForum.pdf



Introduction

Deep Neural Network (DNN) is a critical component in the Al revolution

ek

edical Devices

Face Recognition Self-driving Wearable M

- However, it comes at the cost of high computational
complexity and energy consumption, limited in Internet-of-
thing (loT) applications.

- Besides, on-chip learning is essential for data privacy and
reducing communication cost.



Introduction

Name Type M?#d;Ir:::; Model size (\vB) (forw(:;'fasp:)
AlexNet CNN 60,965,224 233 MB 0.7
GoogleNet CNN 6,998,552 27 MB 1.6
VGG-16 CNN 138,357,544 528 MB 15.5
VGG-19 CNN 143,667,240 548 VB 19.6
ResNet50 CNN 25,610,269 98 MB 3.9
ResNet101 CNN 44,654,608 170 MB 7.6
ResNet152 CNN 60,344,387 230 MB 11.3
Eng Acoustic Model RNN 34,678,784 132 MB 0.035
TextCNN CNN 151,690 0.6 MB 0.009

High computational complexity with large model size

Source: https://www.hpcuserforum.com/presentations/Wisconsin2017/HPDLCookbook4HPCUserForum.pdf
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Alpha Go Lee Se-dol
1202 CPUs, 176 GPUs, 1 Human Brain
~1 MW Power ~20W Power

Extremely huge energy consumption of DNN model



Introduction

Edge server ‘ ‘

DNN to be A o _
r trained ‘ ” Gradient can be il 1* g# : . Gradient update ﬂ !#
1\ - compressed or sentl 0

e

- i T g | §
2 e" , 5 -
iii#D &S o \ g‘: v Gradient update gi
e paoal i 10w
End fig/ice‘& ..‘K'End deviceiig) i!i) Hk}j ‘. 2 “.p\‘ ii‘?
Conventional cloud/server-based , ,
learning On-chip edge learning

- Protect data privacy
- Reduce energy consumption of communication

Chen, Jiasi, and Xukan Ran. “Deep learning with edge computing: A review.” Proceedings of the IEEE 2019: 1655-1674. 10
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Filter Input

Qutput

Weight Activation Activation

Convolutional Layer

weight layer
F(x) lrelu .
weight layer identity
F(x)+x

Residual Connection

Overview
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Fully-connected Layer Self-attention

- There are many types of layers in DNN.

- In a DNN, convolutional layers dominates the
most computation cost.

- There is a trade-off between general and specific.
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Overview

= sign(W)

a =wnl W[,

Binarized Neural Network (BNN), NIPS 2016

Depthwise
Convolution

— M —

%/% % Pointwise
Convolution

MoblleNet, NIPS 2016

Binary weights and activations
All the multiplication can be
replaced with XNOR

Learning process is hard to be
implemented on hardware

Efficient networks for mobile loT
devices

Reduce the channels of weight
kernels

96.9% parameters reduced
compared with VGG-16

13



Overview
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Convolutional Layer Google TPU, ISCA 2017



Overview

Computing-in-memory
Reducing global buffer size

. e N 7
Memory Digital NN Al Chlp Al Chip CIM Macro
CIM CIM
PE — PE — PE I.iteIPE | I.itciPE |
1 1 1 Memorv
SRAM PE — PE — PE)| - rec uf!i”.'ae — uf"el“ﬂe —
' i i _,-" SRAM
PE — PE — PE | | ZB-0-mac (Less Capacity (ite PE " Lite PE
"~ ALU CTRL Transh
49 o 4 ¥ st ' 3
Data Bus Data Bus
W

and transfer frequency

Chuan-JiaJhang et al., IEEE TCAS-1 2021

Ctrl

Decoder

Decoder

<Bank - Bit.0>

|',:“< Bank - Bit.15>.,

10

e

WBLB
WBL

RDB'L

RD'WL

T-SRAM 7T Cell

Kyeongryeol Bong et al., I[EEE JSSC 2018

Transposable Memory
(T-SRAM)

Weight matrices are transposed
during forward and backward
propagation.
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Overview

Optimizations of DNN Accelerators

DNN Structure Optimization Neuron-Synapse Optimization
. Neuron opt Synapse opt Neuron Op Opt.
Target Opt Computational Pattern Opt, (in sparsity) (w sparsity) (out sparsity)

CNN

Algorithm

= Pruning

« Prediction

?g“- LSTM » Separable Filter

Approximation BNN

L Y
[ Owverall Architecture J [ PE Array & Compute Pattem J
[ e e [ Memory Architecture | [ Paralel | [ DataReuse || SParsity ]
Architecture y J ) J\___ Handling
f ) ) \(__TPU ) ( ook G
Homogeneous Arch, ] Image L] lock ting
Heterogeneous Arch. : g:?gﬁ;ﬁ?ﬂ!‘:mw? Channel « 0 Skipping
Reconfigurable Arch, y Mixed — = Prediction
L 2 . ., A >, L Eyerlss S
) s s
Chip Operation ] Custom Functional On-Memory ]
Circuit ) )
Mear-threshold Voltage Operation, Voltage-Clock Scaling} l FIM, Transposable-SRAM | Near/Sub-threshold SRAM, J
L - . F‘

CIM
J. Lee et al., "The Hardware and Algorithm Co-Design for Energy-Efficient DNN Processor on Edge/Mobile Devices," in IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3458-3470, Oct. 2020 16
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Case Study

Deep Belief Network (DBN)

12345678 | :
gO0ABCDEF| e Lo AN LY |
GHIJKLNN— '@m&{%’;{&}yv — Results
i TEHT R

Input | ‘\../’\\‘/’%.{."

|
|
———————

Binary activations
Unsupervised learning dominates
Local update of weights

Wearable devices

18



Case Study

_Rlivl I\/I_l o i Hidden
& A @ - Neurons
| | ) (HN)

| Classifier 2N\ SIASOS :

| J_(Supervised) v « :’x::- A Weights

| o - S, Ve I

| | ] Visible

| | - Neurons
[ ] l| | (VN)

| | RBM Model

| Output Layer

| | - The learning process of DBN is divided into

 _ : . :
Layer 1 unsupervised learning of several Restricted Boltzmann
(input layer) Layer 2 Layer 3 Layer M-1 Layer M .
Machine (RBM).
DBN Model

- RBM is a probabilistic model serves as encoder-decoder

Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with
Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021,
under review.



Case Study

Sa(;“p””ng;’ti”a - Two Forward Generation (FG) and one
hizl{ﬁ RN>o Backward Reconstruction (BR) phases before
@ a‘-;gr? updating weights.
z,.=zi¢jw,.,.yi - Weighted Sum and Gibbs Sampling are

) rocessed under each phase.
mfiileizlation Phase 2- FG Phase 4- FG P P
Phase 3- BR

—— - For instance,
—
0
ho ny o 1, a(z]f-‘)ZRN
— (=1 0, a(zj ) < RN
Training Data
Multiply-Accumulation, MAC Gibbs Sampling
RBM Unsupervised Learning — CD Algorithm
P J J - Update,

AW = §(V'H® —V1H') Local

Jiajun Wu et al., “An Energy-efficient Multi-core Restricted Boltzmann Machine Processor with On-chip Bio-plausible Learning

and Reconfigurable Sparsity,” in 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2020. 20



Case Study

n p
0
Parallel zl' = z VJQXWLj:Z v Xwyj+
. j=1

J=1

v Xwyj+ - -+ vy X Wy, Sub-network

Sparsity vjp Xwyj f v}’ = 0, this multiplication will not contribute to results
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/ I 7 b
/ | WTH .
) @) S
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s Sub- yvo —————- HO
,  hetworks , 7’( G mm—al
| ) & sz
| / <==mmmmm BR le
Ne— — — — = 4
LI / LI I ]
|
/
(Al r——
I__,/ yl FG el
WT'H

Sub-network & Reuse weights

Only 2 MAC

4 MAC . : ;
operations in weight

blocks due to sparsity

operations

N

| Different MAC
due to v, |
/

Neuron Neuron
stateis 0 stateis 1

Sparsity of neuron states

Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with
Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021,

under review.
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Case Study

Architecture Design

Proposed Heterogeneous Multi-core Architecture

( Multi-core Partial Summation Engine (MPSE) \ (Accumulation & Sampling Engine\
_ — — (ASE)
= Rz'z"lcf)re - Ri'}’iczo)re — RE'E’;C,\IO)W 4 Cluster 1 ) MPSE is for MAC operations of each sub-
I’ I, I, o e v su RNG = network-
| Horizonal Bus #1 | m— GL.I B e ©) i
3| [remcore | 12l [ReM core I — — ASE is for accumulating partial sums of sub-
5 5 e S e _ - RNG o )
- #(2, 1) 2 #(2,2) - #(2, N) @ | i]/ ,,,,, o @% networks, and sampling new states by
5 5 I G I L - ) . o
i [ N Horizonal Bus #2 2 | m— e G|bb$ Sampllng
( Cluster # max(M, N) h
= ACC_ 0 [me]l [, Local weights and local learning.
ully —LA-O [F?
RBMC RBMC RBM C = . e
s Pt N Limit the data transition into local bus,
) 1 ’ ACC _ SU | RNG " . . .
1 1 ol ﬁ1f lllll @ @% reducing communication costs.
Horizonal Bus #M f%— -
K \ \. J

Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with

Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021,
under review.
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Case Study

Data Mapping

p—
— .l-'""-'_-_--_

— —_ - -~
L ] L ] \ \
OHOISHDENOHOR .
l i | !
RBMCore ) F¢ (" RBMCore ) F&( RBM Core RBMCore ) C (" RBMCore ) F¢( RBM Core
#(1.1) l #(1, 2) l 21, N) #2, 1) l #2, 2) l #2, N)
Wy 1~Wp r Wp+1,1 " Wpag,n w u,1” ~Wnr Wir+1~Wp,r+s p+1r+1~ Wpgr+s Wiur+1 ™ Wnr+s

*ree

Partial Partial | Partial Partial
Summations (PS) Summations (PS) Summations (PS) Summations (PS)
Accumulation & Sampling Accumulation & Sampling

hll h.z't hg‘l' h.4--. h,,'l' h.,.H't h.,.+4 h.,,+3$ h.,,+4---h.,,+4

- Each RBM core is responsible for one sub-network.

- hq{~h, are mapped into the first row of RBM cores in MPSE. h,.,1~h,., ; are mapped
into the second row of RBM cores.

23



Case Study

Sub-network & Reuse weights

Why the weights are all mapped into on-chip local memory?

Attainable
Performance P
FLOP/s y
A Memory Compute
0 Bound Bound
WV e '
FGC - .
WTH Convolutional
¢ BR H1
i layers
7R , ) ¢
______ H 0 Maximum :
N 44 : awinae | Fully-connected /|
WT H Performance :
<@ BR |—>H1
N =/ :
q ;
0 :
WV
FG -
T ' s
& BR 1 : Operational
& > ] Intensity
* T
ﬁ Byte/s I — FLOP/Byte
max
Maximum Maximum ﬂ
Memory Operational
Bandwidth Intensity

Roofline Model
Source: https://blog.csdn.net/dcrmg/article/details/79652587



Case Study

N— — — — - e
VO WV HO
yi FG el b
WTH
<emmmms BRjmp 1

How to efficiently compute MACs in one sub-network?

Circuit Design

Bank 1 $V1~Vp
Wp,1 W3'1 W2’1 W1,1 > MAC )
PE |zt
1
Bank 2 $V1~Vp
Wpal - [W3z2|W22|Wi2 =+ e —>
PE [
Bank 3 Y1~V
MAC
w waalw, o lw —
b3 33|W23|W1 s =P PE |22
Bankr Y1~
MAC
Wp,r e W3 1Wa s Wir » PE ;1’?

Conventional memory: on-chip multi-bank
SRAM for parallel MAC

Transposable memory: bidirectional multi-port parallel

readout (row and column) for parallel MAC.

Utilize the transposed reuse of local weights -> Transposable Memory to

improve energy efficiency

‘ V1~V
MAC
Wp1 W3ip=—{W21p={W11 > PE 2
f MAC
e — —
Wp,2 W32 W32 Wi,2 > PE zﬁ‘
MAC
Wp3 W33 = W3 = Wy 3 =P PE ;,lr
$V1~Vp
MAC
w v | W e Wy el Wy
:J,T ;r ;r 1r -> PE Z’ll
MAC l MACI MAC | [ MAC) 1~h-
b
PE PE PE PE

25



Case Study

Circuit Design

|—} Column Address

(;E L | | RAL |
D U Lo
o m Storage Storage Storage s
g_ i3 =  Unit |~ = Unit §{CAL e Unit | 8 =
S 4 bW | () [ Waa || ¥ [ Wpa 0 € 4 il
g Z > RDL[O]I/I ] W . P o
> | I | 2 Control | ® . .
- T - Compared with conventional SRAM, we
C - % Storage StSre_ltge Storage 2
> = Unit [ ™ ni — bt Unit |— .
RN w w W ® added a new set of address lines and data
s2l e 8] | a2 | | f [ Waz ||} p,2 £
2 ) =14 ron_ . ) Gl P ;
@ § @ o []! o I , L, ; Output ||nes
17 : |4 T
= : : : s m
= |Parallel Py
. | | | = W g ' (é

> torage Storage Storage w P4 . b d
2| H ot H e O e 5 fou o - Register-based memory
= y Wir X | Wer , | Wy r @ )
® o C s
7] rRoLN-1l 2 | I’ Z

rd 7 rd

CDL[0] CDL[1] Ce CDL[N-1]
RGS Column Read Buffer VNS VNs
HNs
i Generate Reconstruct
w wT
Update Module Read Data
RBM Model

Proposed Transposable Memory

Jiajun Wu et al., “An Energy-efficient Multi-core Restricted Boltzmann Machine Processor with On-chip Bio-plausible Learning
and Reconfigurable Sparsity,” in 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2020.



Case Study

Circuit Design

Faster
A
Counter R2ess LMt | | clock
| Port [€ W11 W12 Wir
> w w w
Neural | ENable ' 2,1 2,2 2,7
state —
) o Wy Wy 2 w.
— =) E p’ p’ p’r
o oo T Seriall Seriall
= | 1 @) w .. w ..
V/H States | o =
Register [ = 5 PE #1 PE #r
" v v
=1 system ’ PE Read V;
Clock | [ Read Address Partial Sum of h, Partial Sum of h,.
"l Port To
Memory
Sparse Address Generator Skip Zero

- The skipping zero method reduces energy consumption of invalid reading and computations

- The sparse addresses are generated BEFORE FG and BR phases



Case Study

Performance - Throughput

System Time per Throughput Speed
Clock image (GNWPS) up
CPU (Core 17- :
7500) 2.7 GHz 328 us 0.02 x1
This study
(M=6.N=101n _ \ 5
RBM 1- M=N=10 100 MHz 1.41 ps 5.53 x276.5
in RBM2)
This study
(M=3.N=51n _ ﬂ 213.0
RBM 1: M=2. 100 MHz 1.83 ps 426 x213.
N=3 in RBM2)
C. Tsaieral. [5] .- . -
/ 376.5
(ASIC) 210 MHz N/A 7.53 %376
B. Ahn [12] ,_
/ 5.
(FPGA) 200 MHz N/A 1.90 %x95.0
J.Suetal [13] .. o
/ # 195.5
(FPGA) 200 MHz N/A 2.46 X
GeCo [14] .
(FPGA) 50 MHz 618.13 ps 0.88 x44.0

*Note that because the training datasets for on-chip learning are different in
these works. it is unfair to compare processing time per image. *It is converted

from original GMULPS parameter.

GNWPS: G Neural Weights Per Second
x2.25 faster than the state-of-art FPGA work

The architecture with more RBM cores has
higher throughput

We can also use “FLOPS/s” to evaluate the
throughput. But it does not suit this case.

Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with
Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021,

under review.
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Case Study

Performance - Energy Efficiency

- RBM size Energy per NW
This study in
FPGA 100-60-30 45.0 pJ
: 41.31 pJ
C.Tsatetal. [5] X X NS _
i1 65-nm ASIC 4096-4096 (energy by extemal memory access
1s not included )

- Evaluate energy efficiency: energy per Neural Weights update

- Improve 74% energy efficiency due to sparse address generator

200.00
180.00
74% energy
160.00 efficiency due
140.00 to sparsity
= optimization
£ 120.00
S
o
= 100.00
(@]
@ 80.00
c
L

60.00

40.00

20.00

0.00

Without With SAG
SAG

Energy efficiency improvement
due to data sparsity optimization
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Case Study

From this case, what is the steps we design a hardware accelerator

Three level-based
optimization

Algorithm level

[ -

Find domain-specific models and algorithms.
Exploit data characteristics such as reuse,
sparsity etc.

Architecture level

According to data characteristics, design a
specific architecture
Schedule and data mapping.

Circuit level

Design efficient computation circuits.
Optimize circuits based on data and
computation characteristics.

Constraints
ASIC: Technology, Maximum Area,
Bandwidth and Power etc.
FPGA: Available resource (e.g., LUT,
DSP), Maximum Frequency etc.

Utilization rate of PEs, Bus...

Performance

- Task performance: accuracy
based on specific dataset.

- Acceleration performance:
throughput, frequency etc.

- Energy efficiency: Energy during
training / inference per batch /
image / update etc.

30
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Development Trend of DNN Accelerators

Part | - Compiler

CPU Accelerator
Compilation Execution Compilation | Execution
Program Processed DNN Shape & Size Output
Behavioral Statistics Data Behavioral Statistics Activations
-] | 1 |
Architecture Dataflow(s) |
Compiler ! Processor Mapper ! DNN Accelerator
pArchitecture Implementation
i Details |
. Binary Input . Mapping Input
> Program Data 5 Config Activations

& Weights

Without compiler/mapper, accelerators are only “evaluation hardware”, and cannot work in applications.

Source: http://eyeriss.mit.edu/tutorial.html 37



Development Trend of DNN Accelerators

Part | - Compiler

The DBN Processor work has a compiler

@@ @

— —

RBM core ) ¢ ( RBMCore ) FC RBM Core
#(1,1) l #(1, 2) l #(1, N)
W1,1~"Wp r Wp+1,1 " Wp+q,r Wy, 1~Wn,r

Partial Partial
Summations (PS) Summations (PS)

Accumulation & Sampling

ny e e

Map the corresponding neuron states and
weights into different RBM Cores.

Hidden
Neurons
(HN)
- :/. - .

: ( Weights
Visible
@@@O@W
(VN)
RBM Model

But the RBM model is a simple fully-
connected layer, which limits the
mapping space.

33



Development Trend of DNN Accelerators

Part | - Compiler

However, when it comes to Convolutional Layers ...

2 « X=8 . X=6 for(n=0; n<2; n++)
G4 R - for(k=0; k<4; k++)
‘ for(c=0; c<6; c++)

for(y=0; y<8; y++)
for(x=0; x<8; X++)

for(r=0; r<3; r++)

for(s=0; s<3; s++)
O[K][y-r][x-s] += W[k][c][r][s] * I[c][y][x];

A
A

8
9

4
N=2

K

7D for-loop representation

Exist a large number of mapping / scheduling
Filter Input Output . .
Weight Activation Activation opportunities

34



Development Trend of DNN Accelerators

Part | - Compiler

_ 7D DNN Layer 2D/3D Accelerator
PE PE PE PE
Rf. Spad| [Spad] [Spad] [Spad]| [
iRy Map | | &5
S " (CONV_N PE |{ PE || PE |H{ PE 4
. - - Spad| [Spad| [Spad] [Spad o
=
- =
Filter Input Output ]
Weight Activation Activation T SPE! s':EEd SF:EJ SPE =
Data / Computation Tiling Dataflow
Number: Tile IDs Mapping on entire
g, 3 _ accelarator at fima =0 iy
. } - FEO| |PE1]| |PE2]| |PE3]...
0P I iE RE S
K X il FB I
Yl
L
= PP T e 8B EEEE
Filter Tiles Input Tiles Qutput Tiles T|Ie SChEdU””Q Spatial Partitioning
Mapping

HW Resources DNN Model

Mapping

-1

MAESTRO

Abstract HW
Model

Data Reuse
Analysis Engine

Performance
Analysis Engine

Buffer
Analysis Engine

- Access Counts

(Energy)
- Size Req.

Buffer
Analysis

- Max BW REQ.
- # of Traversals

- Bottleneck Point

NoC
Analysis

- Throughput
- Latency

Performance
Analysis

Due to the large mapping space of Convolutional Layers, the compiler should be able

to evaluate and judge whether the selected mapping is optimized.

Hyoukjun Kwon et al.,
IEEE MICRO 2019, October 12—16, 2019, Columbus, OH, USA.

“Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach,” in
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Development Trend of DNN Accelerators

Part | - Compiler
Typical works in recent years

- Tiangi Chen et al., TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI 2018.
- A. Parashar et al., Timeloop: A Systematic Approach to DNN Accelerator Evaluation, ISPASS 2019.

- H. Kwon et al., Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-
Centric Approach, MICRO 20109.

- Xuan Yang et al., Interstellar: Using Halide’s Scheduling Language to Analyze DNN Accelerators, ASLPOS
2020.
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Development Trend of DNN Accelerators

Part Il - High Level Synthesis & Design Space Exploration (DSE)

When we get a DNN model, why not give it to the machine and
make itself design the best optimized architecture for us?

| N Kernels x ,
| M Transf I -
. | DE‘COUp|Ed ransforms |
ernels ——
Spatial ' —— g
K | Arch. ——) decoupled- | =——— Mapper + .
ernels c k I Effic Model i =) Compiled
ompiler
(C+Pragmas) 1 p | EVIEVILY afta ow —— iciency Mode Kernels
] vim orm imin: —
o Eliminated due to L 4 I.lilggsl :f)ﬁjﬁ;;pti I:g / Eliminated b/c of poor ] d
hardware limitations ’ performance metric
T i Runs on
Legend e G o _\
Normal ™ Reinforcement o Mem
Compilation =P /.--/Architecture A « — — Learning $ =
Design __y \_ Description - /J' = gaee-e o
Exploration / Graph I:ADG) ) N i ddd 3
Hardware . '_______,/ . . i e I_.I_i -:IJ
Generation — / RTL Hardware Generation of Final Design (once converged) p B-E-E-E-N

Jian Weng et al., “DSAGEN: Synthesizing Programmable Spatial Accelerators,” in ACM/IEEE ISCA 2020.



Development Trend of DNN Accelerators

Part Il - High Level Synthesis & Design Space Exploration (DSE)

What is Reinforcement
Learning (RL)
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K. Hegde et al., “Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search,” in ASPLOS 2021.

We can further combine Compiler and DSE
Architecture-Compiler co-design
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Just a digression - a work published in Nature
Article

A graph placement methodology for fast
chipdesign

Force-directed method places

: RL agent places macros one at a time
Chip J P standard cell
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Proposed by Google, and it will be implemented in the next version of TPU

A. Mirhoseini et al., “A graph placement methodology for fast chip design,” in Nature, June 2021. 39
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Part Il - High Level Synthesis & Design Space Exploration (DSE)

Typical works in recent years

Jian Weng et al., DSAGEN: Synthesizing Programmable Spatial Accelerators, ISCA 2020.

Pengfei Xu et al., AutoDNNchip: An Automated DNN Chip Predictor and Builder for Both FPGAs and
ASICs, FPGA 2020.

C. Zhang et al., Caffeine: Towards uniformed representation and acceleration for deep convolutional
neural networks, IEEE TCAD, 2018.

R. Venkatesan et al., MAGNet: A Modular Accelerator Generator for Neural Networks, ICCAD 2019.
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Part Il - Circuit / Device-level optimization

There are many researchers
who proposed circuit-level
optimization (e.g., Analog
Computing, Computing-in-
memory and transposable
memory)

However, it still lacks a general
framework for simulation and
evaluation of these optimization
from bottom up, when targeting
a specific model.
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K. Bong et al., “A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on

Face Detector,” in IEEE JSSC, vol. 53, no. 1, pp. 115~124, 2021.
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Part Il - Circuit / Device-level optimization
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V4 . . : ' — Initialization
| I i
= . (;:’{'\» gg\(}ell: gntfg' N R w E NN setup 1' Arealleakage power
2, | : MLP : Latency
S ;‘l’\. c}a\ (;”'\ /C Synaptic ] simulator : 5| Dynamic energy
3 12 2 nz Wire RC ! Cell I /A | : (peripherals only)
a Syhaptic [Crossbar m“:edel Mode ST V:H _ :
- ' eighted b - -
Vo Arfay {mxn]- . I sum |
L : ; :
GimYy Gom gﬁ\ : : Gl ) Weight Analog eNVM :
| =------w - update b ,
| l P l I l ] 7 ¥ M :
>G\V) 26V, 3GV, | , Feedback |
j UM j 2jVj LNV ! Classify “ .
' .
Weighted sum operation in NeuroSim Systematic framework for simulation

and evaluation

K. Bong et al., “A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on
Face Detector,” in IEEE JSSC, vol. 53, no. 1, pp. 115~124, 2021.
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Just a digression - Simulation framework
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Conclusion

- With the development of Deep Neural Network, it is important to design energy
efficient hardware accelerator with on-chip learning due to computation complexity,
huge energy consumption, data privacy etc.

- To design an accelerator, researchers should exploit optimizations in algorithm,
architecture and circuit.

- In the future, hardware-software co-design methodology is a development trend for
accelerators, for instance, architecture-compiler co-design, systematic framework for
hardware evaluation.
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