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Introduction

Typical AI Applications

Source: https://www.hpcuserforum.com/presentations/Wisconsin2017/HPDLCookbook4HPCUserForum.pdf
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Introduction

Deep Neural Network (DNN) is a critical component in the AI revolution

Face Recognition Self-driving Wearable Medical Devices

- However, it comes at the cost of high computational 
complexity and energy consumption, limited in Internet-of-
thing (IoT) applications.

- Besides, on-chip learning is essential for data privacy and 
reducing communication cost.
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Introduction

High computational complexity with large model size

Source: https://www.hpcuserforum.com/presentations/Wisconsin2017/HPDLCookbook4HPCUserForum.pdf
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Introduction

Alpha Go
1202 CPUs, 176 GPUs,

~1 MW Power

Lee Se-dol
1 Human Brain
~20W Power

Extremely huge energy consumption of DNN model
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Introduction

Conventional cloud/server-based 
learning

Chen, Jiasi, and Xukan Ran. “Deep learning with edge computing: A review.” Proceedings of the IEEE 2019: 1655-1674.

On-chip edge learning

- Protect data privacy
- Reduce energy consumption of communication  



11

Outline

• Introduction

• Overview of DNN Accelerators

• Case Study - Deep Belief Network Processor

• Broaden Vision - Development Trend of DNN 

Accelerators

• Conclusion

• Q&A



12

Overview

Convolutional Layer Fully-connected Layer Self-attention

- There are many types of layers in DNN.
- In a DNN, convolutional layers dominates the 

most computation cost.
- There is a trade-off between general and specific.

Residual Connection

…
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Overview

Binarized Neural Network (BNN), NIPS 2016

- Binary weights and activations
- All the multiplication can be 

replaced with XNOR
- Learning process is hard to be 

implemented on hardware

Depthwise 
Convolution

Pointwise
Convolution

MobileNet, NIPS 2016

- Efficient networks for mobile IoT 
devices

- Reduce the channels of weight 
kernels 

- 96.9% parameters reduced 
compared with VGG-16
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Overview

Convolutional Layer

Eyeriss, JSSC 2017

Google TPU, ISCA 2017
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Overview

Chuan-Jia Jhang et al., IEEE TCAS-I 2021

Computing-in-memory 
Reducing global buffer size 
and transfer frequency

Kyeongryeol Bong et al., IEEE JSSC 2018

Transposable Memory
(T-SRAM)

Weight matrices are transposed 
during forward and backward 
propagation.
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Overview

J. Lee et al., "The Hardware and Algorithm Co-Design for Energy-Efficient DNN Processor on Edge/Mobile Devices," in IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3458-3470, Oct. 2020

Optimizations of DNN Accelerators

BNN

MobileNet

Eyeriss

TPU

CIM T-SRAM
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Case Study 

- Binary activations 
- Unsupervised learning dominates
- Local update of weights

Results

Input

ECG

Robots

Wearable devices

Deep Belief Network (DBN)
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Case Study 

Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with 
Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 
under review.
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Weights

DBN Model

RBM Model

- The learning process of DBN is divided into 
unsupervised learning of several Restricted Boltzmann 
Machine (RBM).

- RBM is a probabilistic model serves as encoder-decoder
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Case Study 

- Two Forward Generation (FG) and one 
Backward Reconstruction (BR) phases before 
updating weights.

- Weighted Sum and Gibbs Sampling are 
processed under each phase.

- For instance,
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Sampling Detail 

RBM Unsupervised Learning – CD Algorithm
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- Update,

∆𝑾  𝛿(𝑽 𝑯 − 𝑽 𝑯 )

Multiply-Accumulation, MAC Gibbs Sampling

Local!

Jiajun Wu et al., “An Energy-efficient Multi-core Restricted Boltzmann Machine Processor with On-chip Bio-plausible Learning 
and Reconfigurable Sparsity,” in 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2020.
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Case Study 
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Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with 
Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 
under review.
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Case Study 

RBM Core
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Proposed Heterogeneous Multi-core Architecture

- MPSE is for MAC operations of each sub-
network.

- ASE is for accumulating partial sums of sub-
networks, and sampling new states by 
Gibbs Sampling.

- Local weights and local learning.

- Limit the data transition into local bus, 
reducing communication costs.

Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with 
Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 
under review.

Architecture Design
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Case Study

Data Mapping

- Each RBM core is responsible for one sub-network.

-      are mapped into the first row of RBM cores in MPSE.   +    + are mapped 
into the second row of RBM cores.

……
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Case Study

Why the weights are all mapped into on-chip local memory?

... ...

... ...

... ...

  

  

  + 

  + 

  

  

  

  + 

  + 

  

𝑽 𝑯 

𝑽 

𝑯 

FG

BR

𝑽 𝑯 

𝑽 

𝑯 

FG

BR

𝑽 𝑯 

𝑽 

𝑯 

FG

BR

Sub-

networks

𝑾𝑽

𝑾𝑽

𝑾𝑽

𝑾 𝑯

𝑾 𝑯

𝑾 𝑯

Sub-network & Reuse weights

Roofline Model

Source: https://blog.csdn.net/dcrmg/article/details/79652587



Fully-connected 
layers



Convolutional 
layers



25

Case Study
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Transposable memory: bidirectional multi-port parallel 

readout (row and column) for parallel MAC.

- How to efficiently compute MACs in one sub-network?

- Utilize the transposed reuse of local weights -> Transposable Memory to 
improve energy efficiency

Circuit Design
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Case Study
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Proposed Transposable Memory

- Compared with conventional SRAM, we 
added a new set of address lines and data 
lines

- Register-based memory

Circuit Design

Jiajun Wu et al., “An Energy-efficient Multi-core Restricted Boltzmann Machine Processor with On-chip Bio-plausible Learning 
and Reconfigurable Sparsity,” in 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2020.
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Case Study
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Circuit Design
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Case Study

Performance - Throughput

- GNWPS：G Neural Weights Per Second

- ×2.25 faster than the state-of-art FPGA work

- The architecture with more RBM cores has 
higher throughput

- We can also use “FLOPS/s” to evaluate the 
throughput. But it does not suit this case.

Jiajun Wu et al., “An Energy-efficient Deep Belief Network Processor Based on Heterogeneous Multi-core Architecture with 
Transposable Memory and On-chip Learning,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 
under review.
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Case Study

- Evaluate energy efficiency: energy per Neural Weights update

- Improve 74% energy efficiency due to sparse address generator

74% energy 

efficiency due 

to sparsity 

optimization 
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Case Study

From this case, what is the steps we design a hardware accelerator 

Three level-based 
optimization

Algorithm level
- Find domain-specific models and algorithms.
- Exploit data characteristics such as reuse, 

sparsity etc.

Architecture level
- According to data characteristics, design a 

specific architecture 
- Schedule and data mapping.

Circuit level
- Design efficient computation circuits.
- Optimize circuits based on data and 

computation characteristics.

Constraints
ASIC: Technology, Maximum Area, 
Bandwidth and Power etc.
FPGA: Available resource (e.g., LUT, 
DSP), Maximum Frequency etc.

Utilization rate of PEs, Bus…

Performance
- Task performance: accuracy 

based on specific dataset.
- Acceleration performance: 

throughput, frequency etc.
- Energy efficiency: Energy during 

training / inference per batch / 
image / update etc.
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Development Trend of DNN Accelerators

Part I - Compiler

CPU Accelerator

Without compiler/mapper, accelerators are only “evaluation hardware”, and cannot work in applications.

Source: http://eyeriss.mit.edu/tutorial.html
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Development Trend of DNN Accelerators

Part I - Compiler

The DBN Processor work has a compiler

Map the corresponding neuron states and 
weights into different RBM Cores.

..
.

..
.

Visible 

Neurons 

(VN)

Hidden 

Neurons 

(HN)

          

          

Weights

RBM Model

But the RBM model is a simple fully-
connected layer, which limits the 

mapping space.
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Development Trend of DNN Accelerators

Part I - Compiler

However, when it comes to Convolutional Layers …

7D for-loop representation

Exist a large number of mapping / scheduling 
opportunities
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Development Trend of DNN Accelerators

Part I - Compiler

Due to the large mapping space of Convolutional Layers, the compiler should be able 
to evaluate and judge whether the selected mapping is optimized.

Hyoukjun Kwon et al., “Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach,” in 
IEEE MICRO 2019, October 12–16, 2019, Columbus, OH, USA.
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Development Trend of DNN Accelerators

Part I - Compiler

- Tianqi Chen et al., TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI 2018. 

- A. Parashar et al., Timeloop: A Systematic Approach to DNN Accelerator Evaluation, ISPASS 2019.

- H. Kwon et al., Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-
Centric Approach, MICRO 2019.

- Xuan Yang et al., Interstellar: Using Halide’s Scheduling Language to Analyze DNN Accelerators, ASLPOS 
2020.

Typical works in recent years



37

Development Trend of DNN Accelerators

Part II - High Level Synthesis & Design Space Exploration (DSE) 

Jian Weng et al., “DSAGEN: Synthesizing Programmable Spatial Accelerators,” in ACM/IEEE ISCA 2020.

When we get a DNN model, why not give it to the machine and 
make itself design the best optimized architecture for us?

Reinforcement 
Learning
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Development Trend of DNN Accelerators

K. Hegde et al., “Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search,” in ASPLOS 2021.

We can further combine Compiler and DSE
Architecture-Compiler co-design

What is Reinforcement 
Learning (RL)

Architecture Designs

Optimization steps

Performance

Part II - High Level Synthesis & Design Space Exploration (DSE) 
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Development Trend of DNN Accelerators

Just a digression - a work published in Nature

A. Mirhoseini et al., “A graph placement methodology for fast chip design,” in Nature, June 2021.

Proposed by Google, and it will be implemented in the next version of TPU
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Development Trend of DNN Accelerators

- Jian Weng et al., DSAGEN: Synthesizing Programmable Spatial Accelerators, ISCA 2020. 

- Pengfei Xu et al., AutoDNNchip: An Automated DNN Chip Predictor and Builder for Both FPGAs and 
ASICs, FPGA 2020.

- C. Zhang et al., Caffeine: Towards uniformed representation and acceleration for deep convolutional 
neural networks, IEEE TCAD, 2018.

- R. Venkatesan et al., MAGNet: A Modular Accelerator Generator for Neural Networks, ICCAD 2019.

Typical works in recent years

Part II - High Level Synthesis & Design Space Exploration (DSE) 
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Development Trend of DNN Accelerators

Part III - Circuit / Device-level optimization  

- There are many researchers 
who proposed circuit-level 
optimization (e.g., Analog
Computing, Computing-in-
memory and transposable
memory)

- However, it still lacks a general 
framework for simulation and 
evaluation of these optimization 
from bottom up, when targeting 
a specific model.

K. Bong et al., “A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on 
Face Detector,” in IEEE JSSC, vol. 53, no. 1, pp. 115~124, 2021.
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Development Trend of DNN Accelerators

Part III - Circuit / Device-level optimization  

K. Bong et al., “A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on 
Face Detector,” in IEEE JSSC, vol. 53, no. 1, pp. 115~124, 2021.

Weighted sum operation in NeuroSim Systematic framework for simulation 

and evaluation
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Development Trend of DNN Accelerators

Just a digression - Simulation framework

Jiajun Wu et al., “Efficient Design of Spiking Neural Network With STDP Learning Based on Fast CORDIC,” in IEEE TCAS-I, vol. 68, 
no. 6, pp. 2522-2534, June 2021.

Design and Evaluation Framework of SNN

The proposed CORDIC-based synapse 
guided by hardware-software co-simulation 
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Conclusion

- With the development of Deep Neural Network, it is important to design energy 
efficient hardware accelerator with on-chip learning due to computation complexity, 
huge energy consumption, data privacy etc.

- To design an accelerator, researchers should exploit optimizations in algorithm, 
architecture and circuit.

- In the future, hardware-software co-design methodology is a development trend for 
accelerators, for instance, architecture-compiler co-design, systematic framework for 
hardware evaluation.
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